



Jay Liu jayli@Microsoft.com Cloud Solution Architect Data, Al and Advanced Analytics





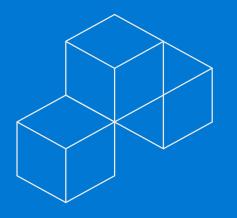
# Azure Data Platform

| Data Collection         | Data Processing                          | Data Storage                       | Data Analysis                | Presentation                  |
|-------------------------|------------------------------------------|------------------------------------|------------------------------|-------------------------------|
| Azure Data Factory      | Azure Data Factory                       | SQL Database                       | Azure<br>Machine Learning    | Power Bl                      |
| Azure IoT               | HDInsight                                | Table/Blob/File/<br>Queue Storage  | HDInsight                    | Power BI embedded             |
| Import / Export Service | App Service<br>Cloud Services            | Cosmos DB                          | Azure Data Lake<br>Analytics | SharePoint                    |
| SQL Tools               | HPC / Batch                              | SQL DWH                            | Azure Analysis               | App Service<br>Cloud Services |
| Big Data Tools          | Functions                                | Azure Data Lake Store              | DSVM / DLVM                  | Azure Notebook                |
| Azure Search            | Stream Analytics                         | Blockchain (Bletchley )            | Cognitive Services           | Excel                         |
| Backup/Restore          | Azure Data Lake Analytics                | Azure DB for<br>MySQL & PostgreSQL | Stream Analytics             | QlikView / Tableau            |
| Other Tools (AzCopy)    | Azure Database for<br>MySQL / PostgreSQL | VM + SQL Server                    | Azure Databricks             | SQL / VM (SS*S)               |

## The Context

- No Need to have a pre-defined GUI Interface
- End-to-End Lifecycle and processes
- Open to frameworks and tools
- Support Deep Learning frameworks
- Help with Environment isolations
- Better management of models & experiments
- Especially on Tracking and Monitoring

- Deployment to multiple targets
- Help with ease of data preparation
- Automated Machine Learning
- Distributed Training
- Support both for Web Service and Batch modes
- Strong support for Spark (Databricks)
- Support for more training & deployment platforms
- Better Integration with other services



# Azure offers a comprehensive AI/ML platform that meets—and exceeds—requirements

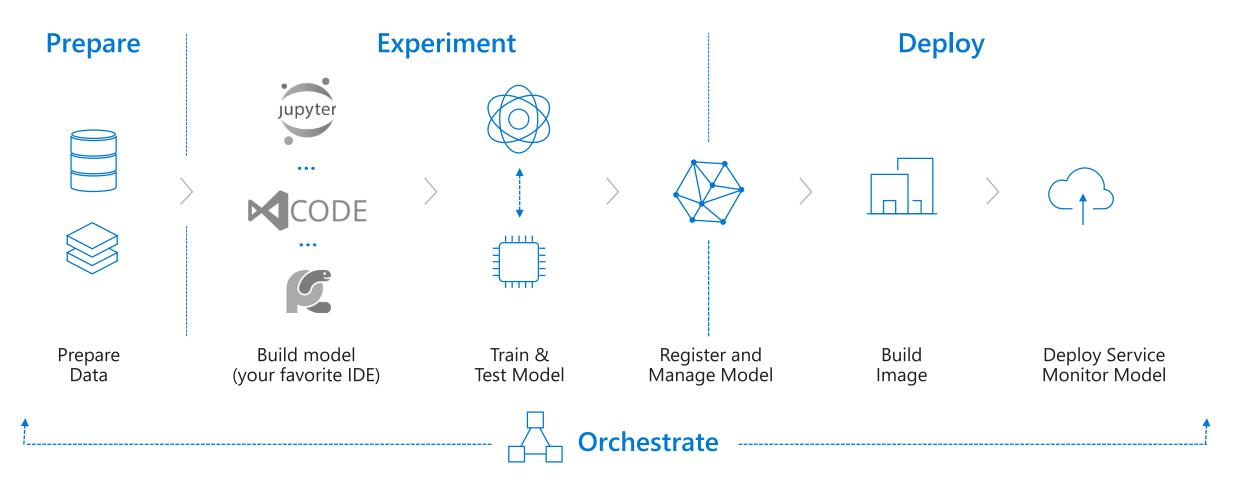
#### **Data Science Lifecycle** Bot Cortana and Other Al Platform Azure Databricks Framework / Services Solutions (Graph, TSI, ...) services **Business** Start **Understanding AML Libraries** Jupyter Notebook & Azure Notebook for Spark Learning On-Premises vs Cloud **Data Source AML** Transform, Binning Database vs Files Feature **CNTK** Workbench Temporal, Text, Image Engineering **Feature Selection** VSTS Streaming vs Batch **Pipeline** Low vs High Frequency Data Algorithms, Ensemble Model **Acquisition & AML Modeling** with Parameter Tuning **ML.NET** On-premises vs Cloud **Understanding Training** Retraining TDSP Experimentation Environment Database vs Data Lake vs .. Model management Small vs Medium vs Big Data zure Machine Wrangling, Cross Validation Model Structured vs Unstructured **AML Model** R & **Model Reporting Exploration &** Data Validation and Cleanup **Evaluation** A/B Testing Management Cleaning Visualization **RStudio** Azure ML Customer VS Code and Tools **Deployment** End Model Studio Acceptance for AI Extensions Store Web Machine **COSMOS** HDI **DSVM** Services Scoring, Batch / AKS / Edge Learning Performance DB / DLVM **HPC** ACI Server Intelligent **Applications** monitoring, etc. CPU, FPGA, GPU, IoT Azure Q# and Azure Data Lake / Azure Storage

Cray

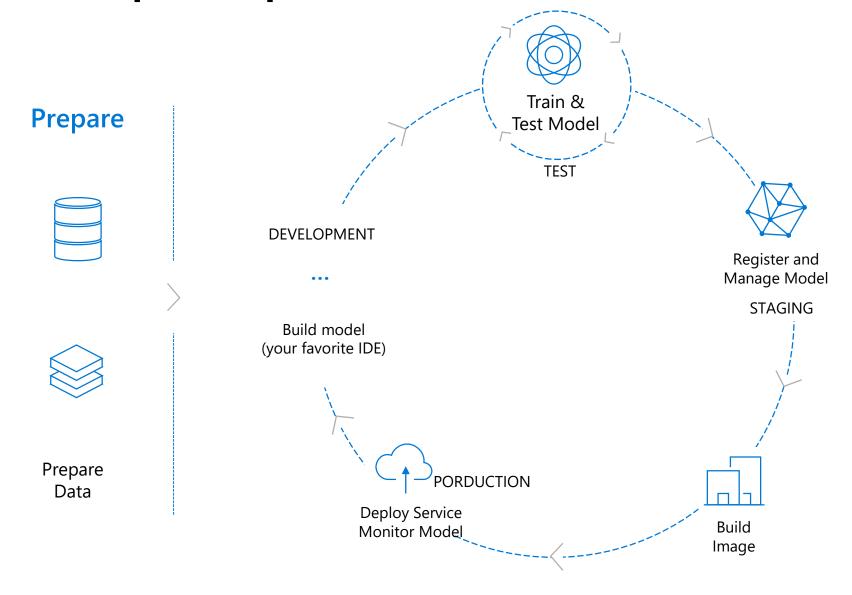
**QSDK** 

# **Machine Learning**

Typical E2E Process



# DevOps loop for data science



## What is Azure Machine Learning service?

Set of Azure Cloud Services



Python SDK

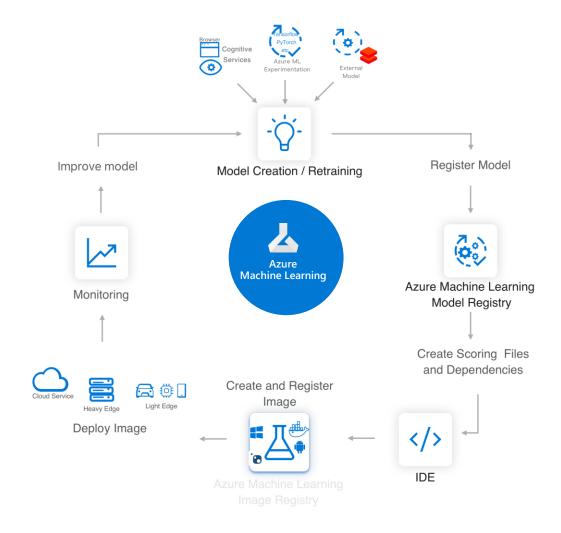
That enables you to:

- ✓ Prepare Data
- ✓ Build Models
- ✓ Train Models

- ✓ Manage Models
- ✓ Track Experiments
- ✓ Deploy Models

## Azure ML service

Lets you easily implement this AI/ML Lifecycle



#### **Workflow Steps**

Develop machine learning training scripts in Python.

Create and configure a compute target.

Submit the scripts to the configured compute target to run in that environment. During training, the compute target stores run records to a datastore. There the records are saved to an experiment.

Query the experiment for logged metrics from the current and past runs. If the metrics do not indicate a desired outcome, loop back to step 1 and iterate on your scripts.

Once a satisfactory run is found, register the persisted model in the model registry.

Develop a scoring script.

Create an Image and register it in the image registry.

Deploy the image as a web service in Azure.

## **Data Preparation**

#### **Multiple Data Sources**

SQL and NoSQL databases, file systems, network attached storage and cloud stores (such as Azure Blob Storage) and HDFS.

#### **Multiple Formats**

Binary, text, CSV, TS, ARFF, etc. and auto detect file types.

#### Cleansing

Detect and fix NULL values, outliers, out-of-range values, duplicate rows.

#### **Transformation / Filtering**

General data transformation (transforming types) and ML-specific transformations (indexing, encoding, assembling into vectors, normalizing the vectors, binning, normalization and categorization).

#### **Intelligent time-saving transformations**

Derive column by example, fuzzy grouping, auto split columns by example, impute missing values.

#### **Custom Python Transforms**

Such as new script column, new script filter, transformation partition



# Model Building (DEV)

#### **Choice of algorithms**

#### **Choice of language**

Python

#### Choice of development tools

Browser-based, REPL-oriented, notebooks such as Jupyter, PyCharm and Spark Notebooks. Desktop IDEs such as Visual Studio and R-Studio for R development.

#### **Local Testing**

To verify correctness before submitting to a more powerful (and expensive) training infrastructure.



# **Model Training and Testing**

#### **Powerful Compute Environment**

Choices include scale-up VMs, auto-scaling scale-out clusters

#### Preconfigured

The compute environments are pre-setup with all the correct versions ML frameworks, libraries, executables and container images.

#### Job Management

Data scientists are able to easily start, stop, monitor and manage Jobs.

#### **Automated Model and Parameter Selection**

Solutions are automatically select the best algorithms, and the corresponding best hyperparameters, for the desired outcome.



# Model Registration and Management

#### Containerization

Automatically convert models to Docker containers so that they can be deployed into an execution environment.

#### Versioning

Assign versions numbers to models, to track changes over time, to identify and retrieve a specific version for deployment, for A/B testing, rolling back changes etc.

#### **Model Repository**

For storing and sharing models, to enable integration into CI/CD pipelines.

#### **Track Experiments**

For auditing, see changes over time and enable collaboration between team members.



## Model Deployment

#### **Choice of Deployment Environments**

Single VM, Cluster of VMs, Spark Clusters, Hadoop Clusters, In the cloud, On-premises

#### **Edge Deployment**

To enable predictions close to the event source-for quicker response and avoid unnecessary data transfer.

#### **Security**

Your data and model is secured. Even when deployed at the edge, the e2e security is maintained.

#### **Monitoring**

Monitor the status, performance and security.

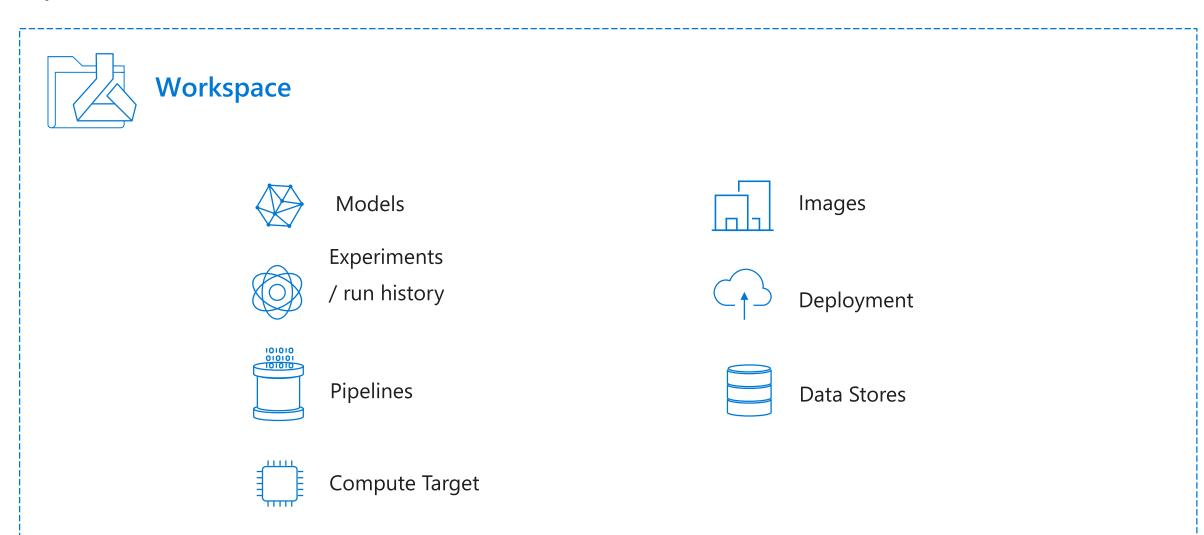




# Azure Machine Learning: Technical Details

## **Azure ML service**

**Key Artifacts** 



## **Azure ML service Artifact**

#### Workspace



The workspace is the **top-level resource** for the Azure Machine Learning service. It provides a centralized place to work with all the artifacts you create when using Azure Machine Learning service.

The workspace keeps a list of <u>compute targets</u> that can be used to train your model. It also keeps a history of the training runs, including logs, metrics, output, and a snapshot of your scripts.

Models are registered with the workspace.

You can create multiple workspaces, and each workspace can be shared by multiple people.

When you create a new workspace, it automatically creates these Azure resources:

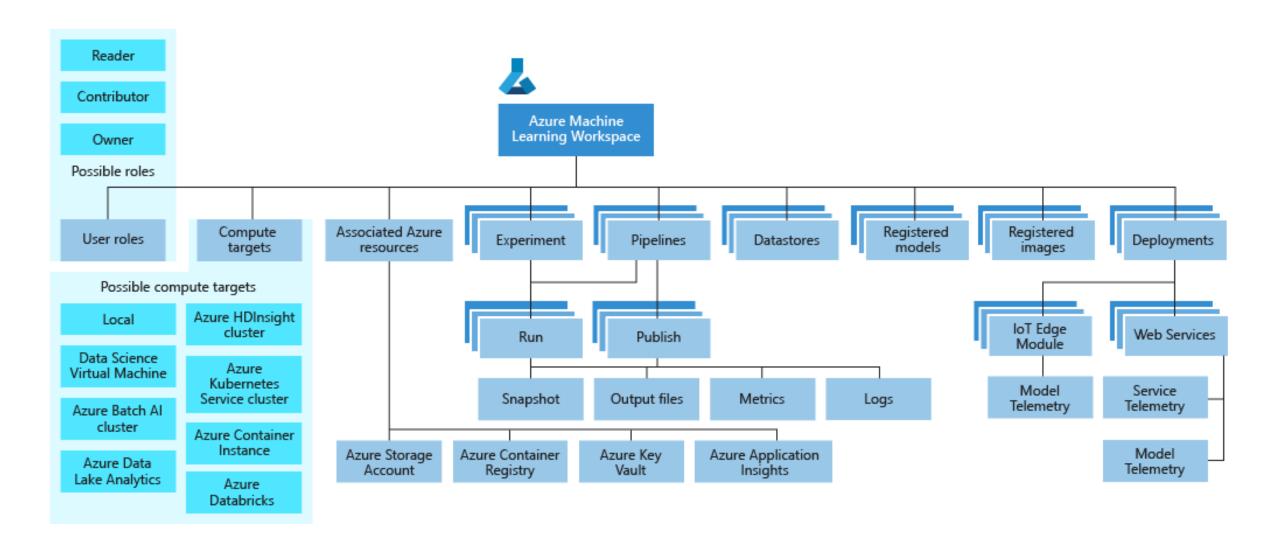
<u>Azure Container Registry</u> - Registers docker containers that are used during training and when deploying a model.

<u>Azure Storage</u> - Used as the default datastore for the workspace.

<u>Azure Application Insights</u> - Stores monitoring information about your model service.

<u>Azure Key Vault</u> - Stores secrets used by compute targets and other sensitive information needed by the workspace.

## Azure ML service Workspace Taxonomy



## **Azure ML service Artifacts**

#### Models and Model Registry



#### Model

A machine learning model is an artifact that is created by your training process. You use a model to get predictions on new data.

A model is produced by a **run** in Azure Machine Learning.

Note: You can also use a model trained outside of Azure Machine Learning.

Azure Machine Learning service is framework agnostic — you can use any popular machine learning framework when creating a model.

A model can be registered under an Azure Machine Learning service workspace



#### **Model Registry**

Keeps track of all the models in your Azure Machine Learning service workspace.

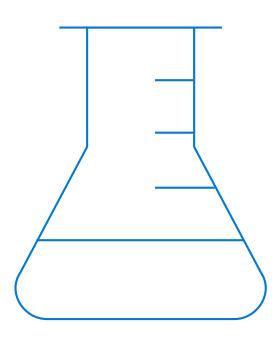
Models are identified by name and version.

You can provide additional metadata tags when you register the model, and then use these tags when searching for models.

You cannot delete models that are being used by an image.

## **Azure ML Artifacts**

#### Runs and Experiments



#### **Experiment**

Grouping of many runs from a given script.

Always belongs to a workspace.

Stores information about runs

#### Run

Produced when you submit a script to train a model. Contains:

Metadata about the run (timestamp, duration etc.)

Metrics logged by your script.

Output files autocollected by the experiment, or explicitly uploaded by you.

A snapshot of the directory that contains your scripts, prior to the run.

#### **Run configuration**

A set of instructions that defines how a script should be run in a given compute target.

## **Azure ML service Artifacts**

#### Image and Registry



#### **Image contains**

- 1. A model.
- 2. A scoring script used to pass input to the model and return the output of the model.
- 3. Dependencies needed by the model or scoring script/application.

#### Two types of images

- **1. FPGA image**: Used when deploying to a field-programmable gate array in the Azure cloud.
- **2. Docker image**: Used when deploying to compute targets such as Azure Container Instances and Azure Kubernetes Service.



#### **Image Registry**

Keeps track of images created from models.

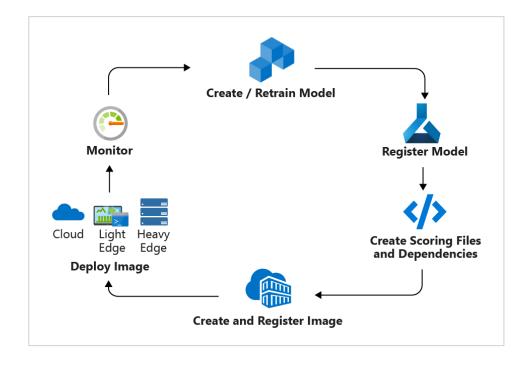
Metadata tags can be attached to images. Metadata tags are stored by the image registry and can be used in image searches

## **Azure ML Concept**

Model Management

# Model Management in Azure ML usually involves these four steps

- **Step 1:** Register Model using the Model Registry
- Step 2: Register Image using the Image Registry (the Azure Container Registry)
- **Step 3**: Deploy the Image to cloud or to edge devices
- Step 4: Monitor models—you can monitor input, output, and other relevant data from your model.



## **Azure ML Artifact**

Deployment

#### Deployment is an instantiation of an image

#### Web service

A deployed web service can run on Azure Container Instances, Azure Kubernetes Service, or field-programmable gate arrays (FPGA).

Can receive scoring requests via an exposed a load-balanced, HTTP endpoint.

Can be monitored by collecting Application Insight telemetry and/or model telemetry.

Azure can automatically scale deployments.

#### **IoT Module**

A deployed IoT Module is a Docker container that includes the model, associated script and additional dependencies.

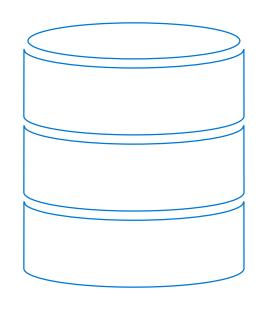
Is deployed using **Azure IoT Edge** on edge devices.

Can be monitored by collecting Application Insight telemetry and/or model telemetry.

Azure IoT Edge will ensure that your module is running and monitor the device that is hosting it.

## **Azure ML Artifact**

#### Datastore



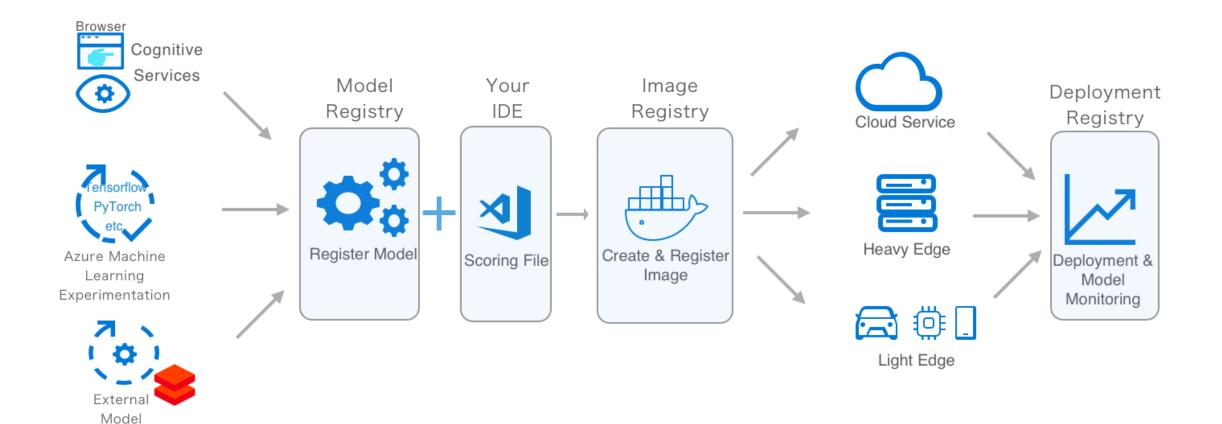
A datastore is a storage abstraction over an Azure Storage Account.

The datastore can use either an Azure blob container or an Azure file share as the backend storage.

Each workspace has a default datastore, and you may register additional datastores.

Use the Python SDK API or Azure Machine Learning CLI to store and retrieve files from the datastore.

## Azure ML: How to deploy models at scale



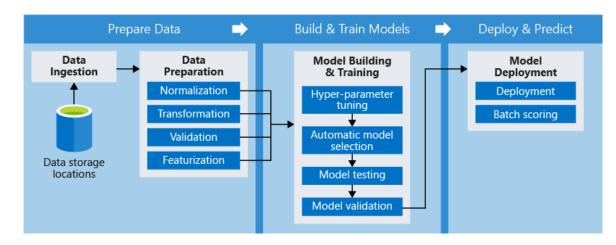
## **Azure ML Artifact**

#### Pipeline

An Azure ML pipeline consists of a number of steps, where each step can be performed independently or as part of a single deployment command.

A step is a computational unit in the pipeline.

Diagram shows an example pipeline with multiple steps.



Azure ML pipelines enables data scientists, data engineers, and IT professionals to collaborate on the steps involved in: Data preparation, Model training, Model evaluation, Deployment

### How pipelines help?

- Using distinct steps makes it possible to rerun only the steps you need as you tweak and test your workflow.
- ✓ When you rerun a pipeline, the run jumps to the steps that need to be rerun, such as an updated training script, and skips what hasn't changed.
  - ✓ The same holds true for unchanged scripts used for the execution of the step
- You can use various toolkits and frameworks for each step in your pipeline. Azure coordinates between the various compute targets you use so that your intermediate data can be shared with the downstream compute targets easily.

## Azure ML Pipeline

Python SDK



The Azure Machine Learning SDK offers imperative constructs for sequencing and parallelizing the steps in your pipelines when no data dependency is present.

Using declarative data dependencies, you can optimize your tasks.

The SDK includes a framework of pre-built modules for common tasks such as data transfer and model publishing.

The framework can be extended to model your own conventions by implementing custom steps that are reusable across pipelines.

Compute targets and storage resources can also be managed directly from the SDK.

Pipelines can be saved as templates and can be deployed to a REST endpoint so you can schedule batch-scoring or retraining jobs

# **Azure ML Pipelines**

Advantages

| Advantage                 | Description                                                                                                                                                                                                                               |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Unattended runs           | Schedule a few steps to run in parallel or in sequence in a reliable and unattended manner. Since data prep and modeling can last days or weeks, you can now focus on other tasks while your pipeline is running.                         |  |  |  |
| Mixed and diverse compute | Use multiple pipelines that are reliably coordinated across heterogeneous and scalable computes and storages. Individual pipeline steps can be run on different compute targets, such as HDInsight, GPU Data Science VMs, and Databricks. |  |  |  |
| Reusability               | Pipelines can be templatized for specific scenarios such as retraining and batch scoring. They can be triggered from external systems via simple REST calls.                                                                              |  |  |  |
| Tracking and versioning   | Instead of manually tracking data and result paths as you iterate, use the pipelines SDK to explicitly name and version your data sources, inputs, and outputs as well as manage scripts and data separately for increased productivity   |  |  |  |

## **Azure ML Artifact**

#### Compute Target

Compute Targets are the compute resources used to run training scripts or host your model when deployed as a web service.

They can be created and managed using the Azure Machine Learning SDK or CLI.

You can attach to existing resources.

You can start with local runs on your machine, and then scale up and out to other environments.

#### **Currently supported compute targets**

| Compute Target                                                    | <b>Training</b> | Deployment |
|-------------------------------------------------------------------|-----------------|------------|
| Local Computer                                                    | ✓               |            |
| A Linux VM in Azure (such as the Data<br>Science Virtual Machine) | ✓               |            |
| Azure ML Compute                                                  | $\checkmark$    |            |
| Azure Databricks                                                  | ✓               |            |
| Azure Data Lake Analytics                                         | ✓               |            |
| Apache Spark for HDInsight                                        | ✓               |            |
| Azure Container Instance                                          |                 | ✓          |
| Azure Kubernetes Service                                          |                 | ✓          |
| Azure IoT Edge                                                    |                 | ✓          |
| Field-programmable gate array (FPGA)                              |                 | <b>√</b>   |

Note: it doesn't make sense to train models on IoT edge, for example.

## **Azure ML**

#### **Currently Supported Compute Targets**

| Compute target                                         | GPU<br>acceleration | Hyperdrive | Automated model selection | Can be used in pipelines |
|--------------------------------------------------------|---------------------|------------|---------------------------|--------------------------|
| Local computer                                         | Maybe               |            | <b>√</b>                  |                          |
| <u>Data Science Virtual Machine</u><br>( <u>DSVM</u> ) | ✓                   | ✓          | ✓                         | ✓                        |
| Azure ML compute                                       | <b>√</b>            | <b>√</b>   | <b>√</b>                  | <b>√</b>                 |
| Azure Databricks                                       | ✓                   |            | $\checkmark$              | $\checkmark$             |
| Azure Data Lake Analytics                              |                     |            |                           | ✓                        |
| Azure HDInsight                                        |                     |            |                           | $\checkmark$             |

Track experiments and training metrics

#### **Start logging metrics**

**start\_logging** - Add logging functions to your training script and start an interactive logging session in the specified experiment. start\_logging creates an interactive run for use in scenarios such as notebooks. Any metrics that are logged during the session are added to the run record in the experiment.

```
run = experiment.start_logging()
run.log('alpha', 0.03)
```

**ScriptRunConfig** - Add logging functions to your training script and load the entire script folder with the run. ScriptRunConfig is a class for setting up configurations for script runs. With this option, you can add monitoring code to be notified of completion or to get a visual widget to monitor.

```
src = ScriptRunConfig(source_directory = './', script = 'train.py', run_config = run_config_user_managed)
run = experiment.submit(src)
```

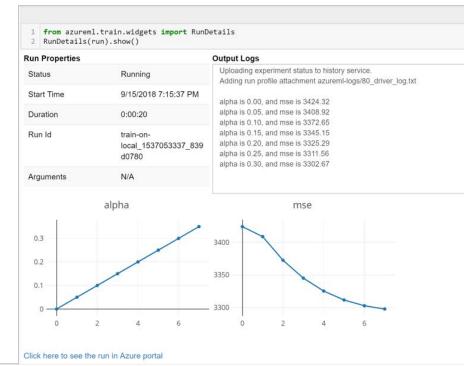
Track experiments and training metrics

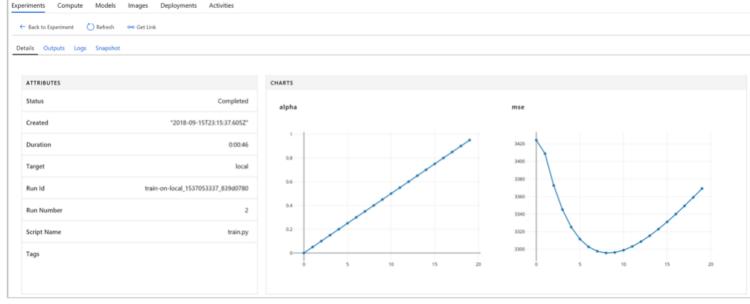
**ScriptRunConfig:** using ScriptRunConfig method to submit runs, you can watch the progress of the run with a Jupyter notebook widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes.

from azureml.widgets import RunDetails RunDetails(run).show()

#### **View the experiment in the Azure portal**

You can view metrics / loggings for both start\_logging and ScriptRunConfig in Azure Portal.





Data Wrangler – DataPrep SDK: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/?view=azure-dataprep-py

- Automatic file type detection.
- Load from many file types with parsing parameter inference (encoding, separator, headers).
- Type-conversion using inference during file loading
- Connection support for MS SQL Server and Azure Data Lake Storage
- Add column using an expression
- Impute missing values
- Derive column by example
- Filtering
- Custom Python transforms
- Scale through streaming instead of loading all data in memory
- Summary statistics
- Intelligent time-saving transformations:
  - Fuzzy grouping
  - Derived column by example
  - Automatic split columns by example
  - Impute missing values
  - Automatic join
- <u>Cross-platform functionality</u> with a single code artifact. The SDK also allows for dataflow objects to be serialized and opened in *any* Python environment.

Azure Machine Learning SDK

pip install --upgrade azureml-sdk[notebooks,automl]

```
pip install azureml-monitoring
from azureml.monitoring import ModelDataCollector
> azureml-monitoring
```

```
pip install --upgrade
azureml-dataprep
import azureml.dataprep as dprep
```

- > azureml.dataprep
- > azureml.dataprep.api.builders
- azureml.dataprep.api.expressions azureml.dataprep.api.functions

- > azureml-core
- > azureml-explain-model
- > azureml-train-core
- > azureml-pipeline-core
- > azureml-pipeline-steps
- > azureml-train-automl
- > azureml-telemetry
- > azureml-webservice-schema
- > azureml-widgets



# How to use the Azure Machine Learning service: An example using the Python SDK

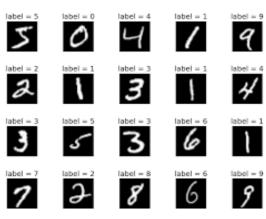
## **Setup for Code Example**

This example trains a simple logistic regression using the MNIST dataset and scikit-learn with Azure Machine Learning service.

MNIST is a dataset consisting of 70,000 grayscale images.

Each image is a handwritten digit of 28x28 pixels, representing a number from 0 to 9.

The goal is to create a multi-class classifier to identify the digit a given image represents.





# Step 1 – Create a workspace

# Step 2 – Create an Experiment

Create an experiment to track the runs in the workspace. A workspace can have multiple experiments

```
experiment_name = 'my-experiment-1'
from azureml.core import Experiment
exp = Experiment(workspace=ws, name=experiment_name)
```

## Step 3 – Create remote compute target

```
# choose a name for your cluster, specify min and max nodes
compute name = os.environ.get("BATCHAI CLUSTER NAME", "cpucluster")
compute_min_nodes = os.environ.get("BATCHAI_CLUSTER_MIN_NODES", 0)
compute max nodes = os.environ.get("BATCHAI CLUSTER MAX NODES", 4)
# This example uses CPU VM. For using GPU VM, set SKU to STANDARD NC6
vm size = os.environ.get("BATCHAI CLUSTER SKU", "STANDARD D2 V2")
provisioning config = AmlCompute.provisioning configuration(
                              vm size = vm size,
                              min nodes = compute min nodes,
                              max nodes = compute max nodes)
# create the cluster
print(' creating a new compute target... ')
compute target = ComputeTarget.create(ws, compute name, provisioning config)
# You can poll for a minimum number of nodes and for a specific timeout.
# if no min node count is provided it will use the scale settings for the cluster
compute target.wait for completion(show output=True,
                                   min node count=None, timeout in minutes=20)
```

Zero is the default. If min is zero then the cluster is automatically deleted when no jobs are running on it.

# Step 4 – Upload data to the cloud

First load the compressed files into numpy arrays. Note the 'load\_data' is a custom function that simply parses the compressed files into numpy arrays.

```
# note that while loading, we are shrinking the intensity values (X) from 0-255 to 0-1 so that the
model converge faster.
X_train = load_data('./data/train-images.gz', False) / 255.0
y_train = load_data('./data/train-labels.gz', True).reshape(-1)

X_test = load_data('./data/test-images.gz', False) / 255.0
y_test = load_data('./data/test-labels.gz', True).reshape(-1)
```

Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The files are uploaded into a directory named mnist at the root of the datastore.

```
ds = ws.get_default_datastore()
print(ds.datastore_type, ds.account_name, ds.container_name)

ds.upload(src_dir='./data', target_path='mnist', overwrite=True, show_progress=True)
```

We now have everything you need to start training a model.

# Step 5 – Train a local model

Train a simple logistic regression model using scikit-learn locally. This should take a minute or two.

```
%%time from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train, y_train)

# Next, make predictions using the test set and calculate the accuracy
y_hat = clf.predict(X_test)
print(np.average(y_hat == y_test))
```

You should see the local model accuracy displayed. [It should be a number like 0.915]

# Step 6 – Train model on remote cluster

To submit a training job to a remote you have to perform the following tasks:

- 6.1: Create a directory
- 6.2: Create a training script
- 6.3: Create an estimator object
- 6.4: Submit the job

# Step 6.1 – Create a directory

Create a directory to deliver the required code from your computer to the remote resource.

```
import os
script_folder = './sklearn-mnist' os.makedirs(script_folder, exist_ok=True)
```

# Step 6.2 – Create a Training Script (1/2)

```
%%writefile $script folder/train.py
# load train and test set into numpy arrays
# Note: we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can
# converge faster.
# 'data folder' variable holds the location of the data files (from datastore)
Reg = 0.8 # regularization rate of the logistic regression model.
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y test = load data(os.path.join(data folder, 'test-labels.gz'), True).reshape(-1)
print(X train.shape, y train.shape, X test.shape, y test.shape, sep = '\n')
# get hold of the current run
run = Run.get context()
#Train a logistic regression model with regularizaion rate of' 'reg'
clf = LogisticRegression(C=1.0/reg, random_state=42)
clf.fit(X train, y train)
```

# Step 6.2 – Create a Training Script (2/2)

```
print('Predict the test set')
y hat = clf.predict(X test)
# calculate accuracy on the prediction
acc = np.average(y_hat == y_test)
print('Accuracy is', acc)
run.log('regularization rate', np.float(args.reg))
run.log('accuracy', np.float(acc)) os.makedirs('outputs', exist_ok=True)
# The training script saves the model into a directory named 'outputs'. Note files saved in the
# outputs folder are automatically uploaded into experiment record. Anything written in this
# directory is automatically uploaded into the workspace.
joblib.dump(value=clf, filename='outputs/sklearn mnist model.pkl')
```

# Step 6.3 – Create an Estimator

An estimator object is used to submit the run.

The directory that contains the scripts. All the files in this directory are uploaded into the cluster nodes for execution

```
from azureml.train.estimator import Estimator
 script params = { '--data-folder': ds.as mount(), '--regularization': 0.8 }
 est = Estimator(source_directory=script_folder, --------------------------------
                 script_params=script_params, ------
                 compute_target=compute_target, ------
                 entry script='train.py', -----
                 conda packages=['scikit-learn'])
                                             Training Script
                                                                             Parameters required
Name of
                   Python Packages
                                                               Compute
                  needed for training
                                                 Name
                                                            target (Batch Al
                                                                            from the training script
estimator
                                                              in this case)
```

# Step 6.4 – Submit the job to the cluster for training

```
run = exp.submit(config=est)
```

# What happens after you submit the job?



### Image creation

A Docker image is created matching the Python environment specified by the estimator. The image is uploaded to the workspace. Image creation and uploading takes about 5 minutes.

This happens once for each Python environment since the container is cached for subsequent runs. During image creation, logs are streamed to the run history. You can monitor the image creation progress using these logs.



### **Scaling**

If the remote cluster requires more nodes to execute the run than currently available, additional nodes are added automatically. Scaling typically takes about 5 minutes.



### Running

In this stage, the necessary scripts and files are sent to the compute target, then data stores are mounted/copied, then the entry\_script is run. While the job is running, stdout and the ./logs directory are streamed to the run history. You can monitor the run's progress using these logs.



### **Post-Processing**

The ./outputs directory of the run is copied over to the run history in your workspace so you can access these results.

# Step 7 – Monitor a run

You can watch the progress of the run with a Jupyter widget. The widget is asynchronous and provides live updates every 10-15 seconds until the job completes.

```
from azureml.widgets import RunDetails
RunDetails(run).show()
```

Here is a still snapshot of the widget shown at the end of training:

| Run Properties      |                                 | Output Logs                                                                                                   |
|---------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| Status              | Completed                       | Uploading experiment status to history service.  Adding run profile attachment azureml-logs/80_driver_log.txt |
| Start Time          | 8/10/2018 12:11:42 PM           | Data folder: /mnt/batch/tasks/shared/LS_root/jobs/gpucluster225c81517743bf5/azureml/sklearn-                  |
| Duration            | 0:07:20                         | mnist_1533921100384/mounts/workspacefilestore/mnist (60000, 784)                                              |
| Run Id              | sklearn-<br>mnist_1533921100384 | (60000,)<br>(10000, 784)<br>(10000,)                                                                          |
| Arguments           | N/A                             | Train a logistic regression model with regularizaion rate of 0.01  Predict the test set                       |
| regularization rate | 0.01                            | Accuracy is 0.9185  The experiment completed successfully. Starting post-processing steps.                    |
| accuracy            | 0.9185                          |                                                                                                               |

# Step 8 – See the results

As model training and monitoring happen in the background. Wait until the model has completed training before running more code. Use *wait\_for\_completion* to show when the model training is complete

```
# now there is a trained model on the remote cluster
print(run.get_metrics()) ------
Displays the accuracy of the model. You should see an output that looks like this.
{'regularization rate': 0.8, 'accuracy': 0.9204}
```

# Step 9 – Register the model

Recall that the last step in the training script is:

```
joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')
```

This wrote the file 'outputs/sklearn\_mnist\_model.pkl' in a directory named 'outputs' in the VM of the cluster where the job is executed.

- outputs is a special directory in that all content in this directory is automatically uploaded to your workspace.
- This content appears in the run record in the experiment under your workspace.
- Hence, the model file is now also available in your workspace.

The model is now available to query, examine, or deploy

# Step 9 – Deploy the Model

Deploy the model registered in the previous slide, to Azure Container Instance (ACI) as a Web Service

There are 4 steps involved in model deployment

Step 9.1 – Create scoring script

Step 9.2 – Create environment file

Step 9.3 – Create configuration file

Step 9.4 – Deploy to ACI!

# Step 9.1 – Create the scoring script

Create the scoring script, called score.py, used by the web service call to show how to use the model. It requires two functions – init() and run (input data)

```
The init() function, typically loads the model
                                               .__▶ into a global object. This function is run only
from azureml.core.model import Model
                                                  once when the Docker container is started.
def init():
      global model
      # retreive the path to the model file using the model name
      model path = Model.get model path('sklearn mnist')
      model = joblib.load(model path)
def run(raw_data):
      data = np.array(json.loads(raw data)['data'])
      # make prediction
      y hat = model.predict(data)
      return json.dumps(y hat.tolist())
                                   The run(input_data) function uses the model to predict a value
                                   based on the input data. Inputs and outputs to the run typically use
                                   JSON for serialization and de-serialization, but other formats are
                                   supported
```

# Step 9.2 – Create environment file

Create an environment file, called *myenv.yml*, that specifies all of the script's package dependencies. This file is used to ensure that all of those dependencies are installed in the Docker image. This example needs scikit-learn and azureml-sdk.

```
from azureml.core.conda_dependencies import CondaDependencies

myenv = CondaDependencies()
myenv.add_conda_package("scikit-learn")

with open("myenv.yml","w") as f:
        f.write(myenv.serialize_to_string())
```

# Step 9.3 – Create configuration file

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for the ACI container. Here we will use the defaults (1 core and 1 gigabyte of RAM)

# Step 9.4 – Deploy the model to ACI

```
Build an image using:
                                                          • The scoring file (score.py)
%%time

    The environment file (myenv.yml)

from azureml.core.webservice import Webservice
                                                          • The model file
from azureml.core.image import ContainerImage
# configure the image
                                                                                   Register that image under the
image config = ContainerImage.image configuration(
                                                                                  workspace and send the image
                                            execution_script ="score.py",
                                                                                   to the ACI container.
                                            runtime ="python",
                                            conda file ="myenv.yml")
service = Webservice.deploy_from_model(workspace=ws, name='sklearn-mnist-svc',
                                              deployment config=aciconfig, models=[model],
                                              image config=image config)
service.wait_for_deployment(show_output=True) -----→ Start up a container in ACI using the image
```

# Step 10 – Test the deployed model using the HTTP end point

Test the deployed model by sending images to be classified to the HTTP endpoint

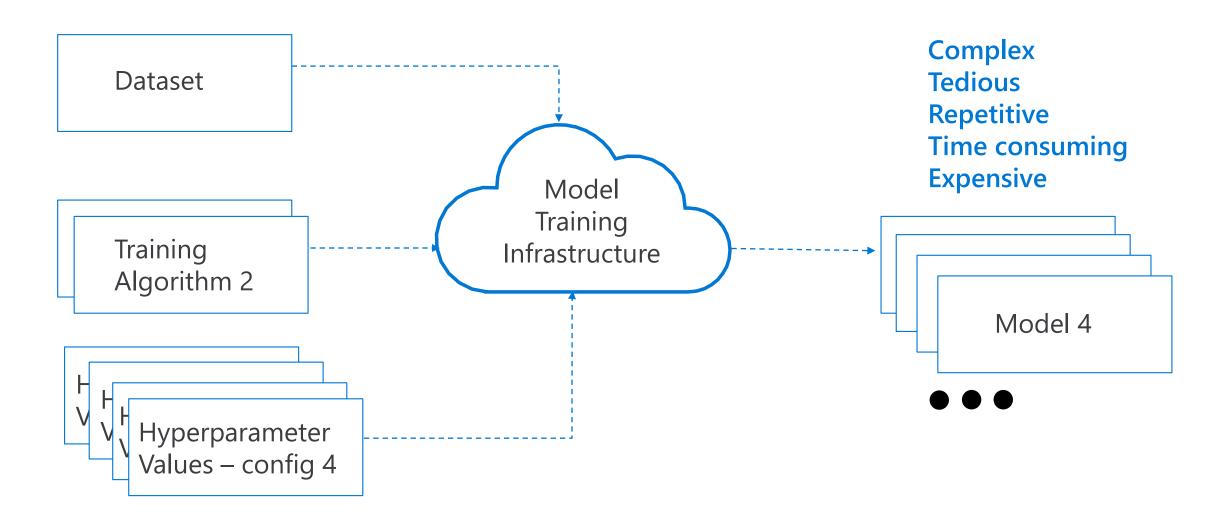
```
import requests
import json
# send a random row from the test set to score
random index = np.random.randint(0, len(X test)-1)
input data = "{\"data\": [" + str(list(X test[random index])) + "]}"
headers = {'Content-Type':'application/json'}
resp = requests.post(service.scoring_uri, input_data, headers=headers)
print("POST to url", service.scoring uri)
#print("input data:", input data)
print("label:", y test[random index])
                                                        Send the data to the HTTP end-point for
print("prediction:", resp.text)
                                                        scoring
```

https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml



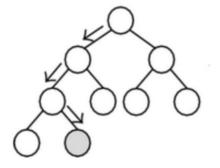
# Azure Automated Machine Learning 'simplifies' the creation and selection of the optimal model

# Typical 'manual' approach to hyperparameter tuning



# What are Hyperparameters?

Adjustable parameters that govern model training
Chosen prior to training, stay constant during training
Model performance heavily depends on hyperparameter



### Setting

Number Of Leaves

Minimum Leaf Instances

Learning Rate

Number Of Trees

| of leaves | Minimum<br>leaf instances | rate  | of trees |
|-----------|---------------------------|-------|----------|
| li ir     |                           | la r  |          |
| 8         | 10                        | 0.1   | 500      |
| 8         | 1                         | 0.05  | 500      |
| 8         | 1                         | 0.2   | 100      |
| 32        | 1                         | 0.05  | 100      |
| 8         | 10                        | 0.2   | 100      |
| 32        | 1                         | 0.025 | 500      |
| 8         | 10                        | 0.05  | 500      |
| 32        | 1                         | 0.1   | 100      |
| 8         | 1                         | 0.025 | 500      |
| 8         | 50                        | 0.05  | 500      |
| 32        | 10                        | 0.025 | 500      |
| 8         | 50                        | 0.025 | 500      |
| 32        | 10                        | 0.05  | 100      |
| 8         | 10                        | 0.025 | 500      |
| 32        | 10                        | 0.2   | 20       |
| 8         | 1                         | 0.1   | 500      |
| 32        | 10                        | 0.1   | 100      |
| 8         | 1                         | 0.1   | 100      |
| 8         | 10                        | 0.1   | 100      |

# Challenges with Hyperparameter Selection

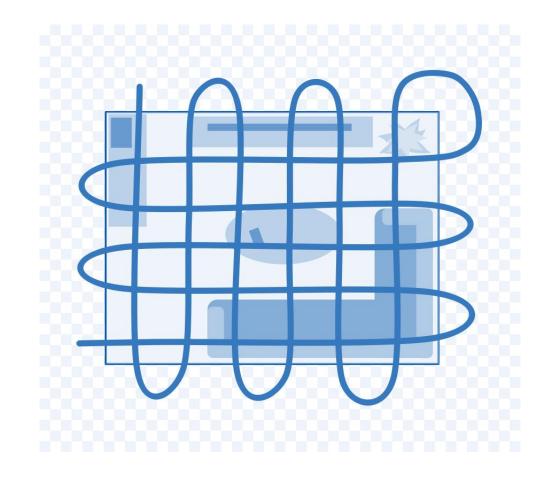
The search space to explore—i.e. evaluating all possible combinations—is huge.

Sparsity of good configurations.

Very few of all possible configurations are optimal.

Evaluating each configuration is resource and time consuming.

Time and resources are limited.



# Azure Automated ML: Sampling to generate new runs

**HyperDrive** 

Define hyperparameter search space

```
{
    "learning_rate": uniform(0, 1),
    "num_layers": choice(2, 4, 8)
    ...
}
```

Sampling algorithm

```
Config1= {"learning_rate": 0.2,
"num_layers": 2, ...}

Config2= {"learning_rate": 0.5,
"num_layers": 4, ...}

Config3= {"learning_rate": 0.9,
"num_layers": 8, ...}
...
```

### **Supported sampling algorithms:**

Grid Sampling Random Sampling Bayesian Optimization

**HyperDrive** 

Evaluate training runs for specified primary metric

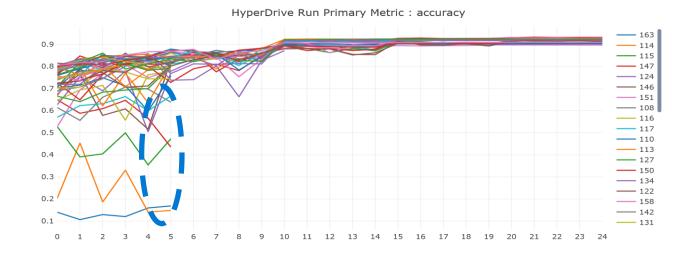
Use resources to explore new configurations

Early terminate poor performing training runs. Early termination policies include:

**Bandit policy** 

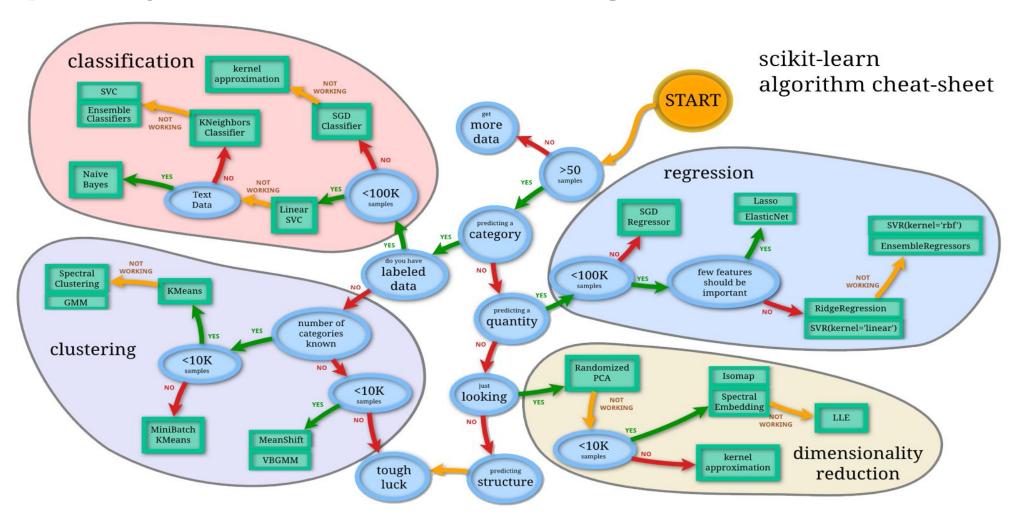
Median Stopping policy

**Truncation Selection policy** 



- •Define the parameter search space
- Specify a primary metric to optimize
- •Specify early termination criteria for poorly performing runs
- •Allocate resources for hyperparameter tuning
- •Launch an experiment with the above configuration
- •Visualize the training runs
- •Select the best performing configuration for your model

# **Complexity of Machine Learning**



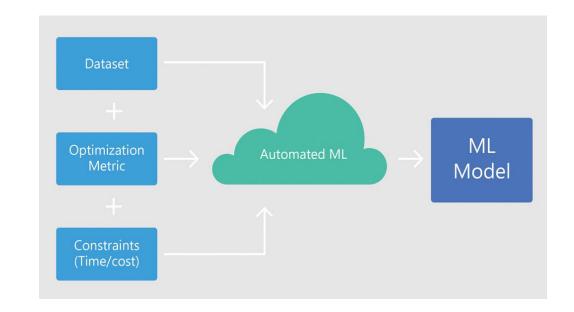
Source: http://scikit-learn.org/stable/tutorial/machine\_learning\_map/index.html

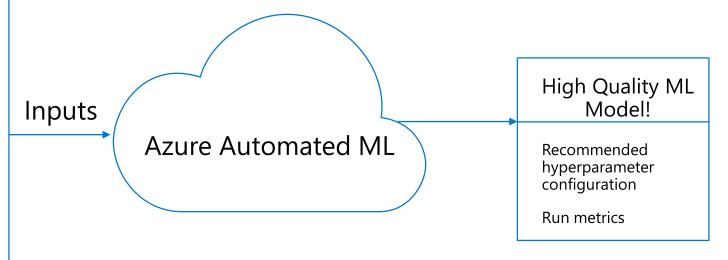
Conceptual Overview

# Automated ML Tuning Specifications

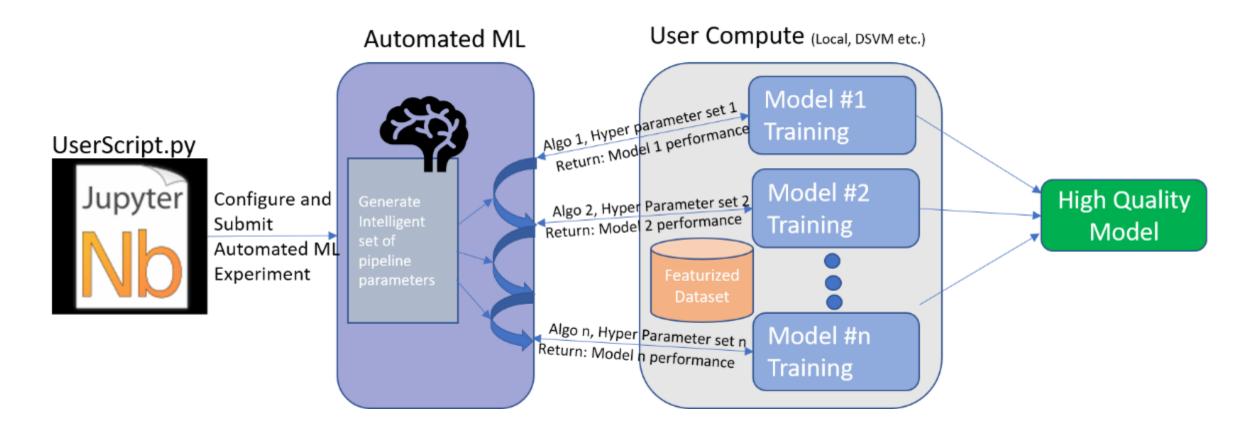
Candidate Algorithms
Optimization metric
Early Termination Policy
Budget – Time / Compute
# parallel runs

Training script + Training data



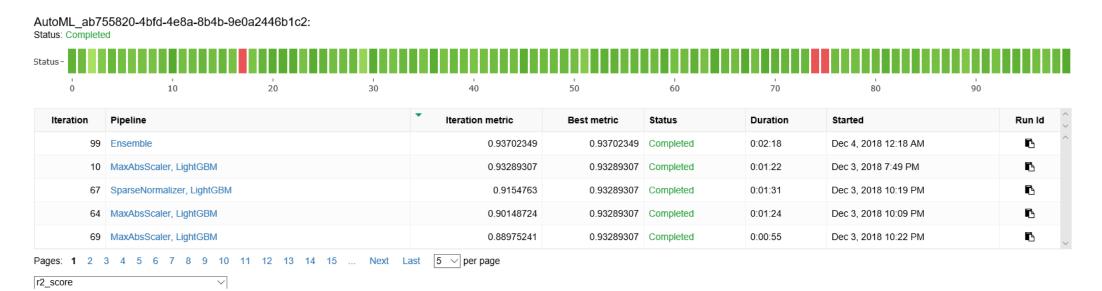


How It Works

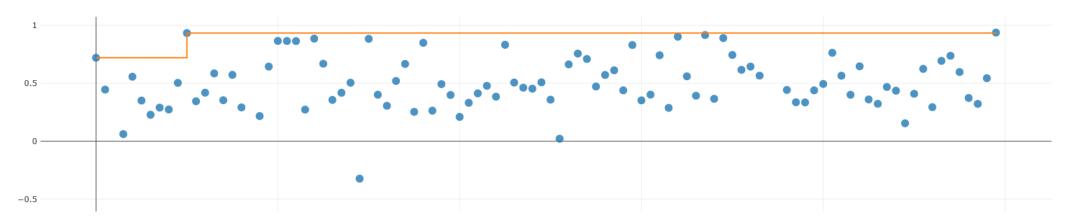


During training, the Azure Machine Learning service creates a number of pipelines that try different algorithms and parameters. It will stop once it hits the iteration limit you provide, or when it reaches the target value for the metric you specify.

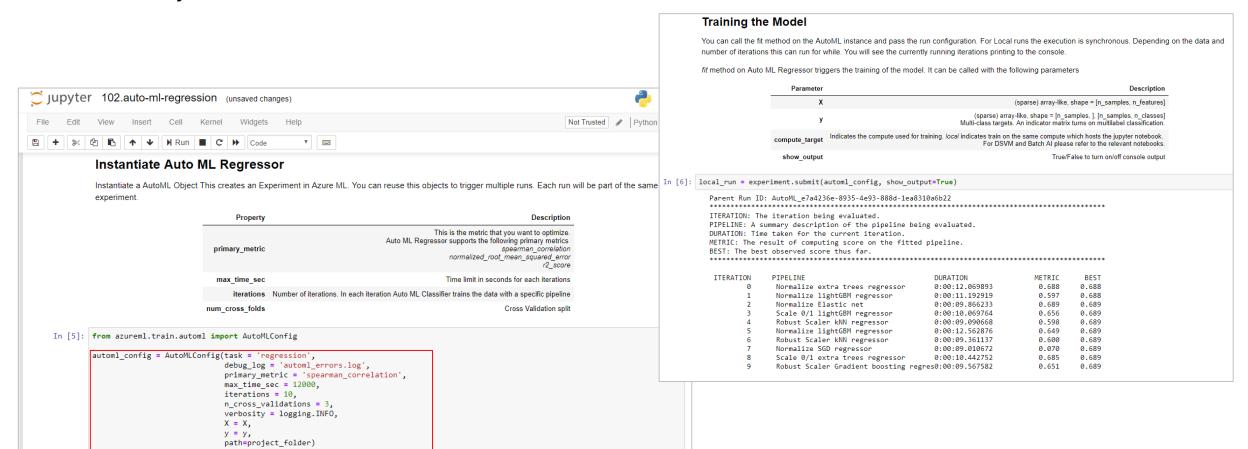
# Azure Automated ML – Sample Output



AutoML Run with metric: r2\_score



Use via the Python SDK



https://docs.microsoft.com/en-us/python/api/azureml-train-automl/azureml.train.automl.automlexplainer?view=azure-ml-py

# **Current Capabilities**

| Category                        |                                    | <b>Value</b>                                                             |  |
|---------------------------------|------------------------------------|--------------------------------------------------------------------------|--|
| ML Problem Spaces               |                                    | Classification<br>Regression<br>Forecasting                              |  |
| Frameworks                      |                                    | Scikit Learn                                                             |  |
| Languages                       |                                    | Python                                                                   |  |
| Data Type and Data Formats      |                                    | Numerical<br>Text<br>Scikit-learn supported data formats (Numpy, Pandas) |  |
| Data sources                    |                                    | Local Files, Azure Blob Storage                                          |  |
| <u>Compute</u><br><u>Target</u> | Automated Hyperparameter<br>Tuning | Azure ML Compute (Batch AI), Azure Databricks                            |  |
|                                 | Automated Model Selection          | Local Compute, Azure ML Compute (Batch AI), Azure Databricks             |  |

Algorithms Currently Supported

| Classification                        | Regression                        | Forecasting                       |
|---------------------------------------|-----------------------------------|-----------------------------------|
| <u>Logistic Regression</u>            | Elastic Net                       | Elastic Net                       |
| Stochastic Gradient Descent (SGD)     | <u>Light GBM</u>                  | <u>Light GBM</u>                  |
| Naive Bayes                           | Gradient Boosting                 | Gradient Boosting                 |
| C-Support Vector Classification (SVC) | <u>Decision Tree</u>              | <u>Decision Tree</u>              |
| <u>Linear SVC</u>                     | K Nearest Neighbors               | K Nearest Neighbors               |
| <u>K Nearest Neighbors</u>            | <u>LARS Lasso</u>                 | LARS Lasso                        |
| <u>Decision Tree</u>                  | Stochastic Gradient Descent (SGD) | Stochastic Gradient Descent (SGD) |
| Random Forest                         | Random Forest                     | Random Forest                     |
| Extremely Randomized Trees            | Extremely Randomized Trees        | Extremely Randomized Trees        |
| <u>Gradient Boosting</u>              |                                   |                                   |
| <u>Light GBM</u>                      |                                   |                                   |

| -                          |                                                                                                                                                                                                                                                                                                                                                               |                              |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Property                   |                                                                                                                                                                                                                                                                                                                                                               | Default Value                |  |
| task                       | Specify the type of machine learning problem. Allowed values are Classification Regression Forecasting                                                                                                                                                                                                                                                        | None                         |  |
|                            | Metric that you want to optimize in building your model. For example, if you specify accuracy as the primary_metric, automated machine learning looks to find a model with maximum accuracy. You can only specify                                                                                                                                             | For Classification: accuracy |  |
|                            | ' /= ' '                                                                                                                                                                                                                                                                                                                                                      |                              |  |
| primary_metric             | Classification: F                                                                                                                                                                                                                                                                                                                                             |                              |  |
| '-                         | accuracy AUC_weighted precision_score_weighted balanced_accuracy average_precision_score_weighted                                                                                                                                                                                                                                                             | spearman_correlati           |  |
|                            | Regression:                                                                                                                                                                                                                                                                                                                                                   | on                           |  |
|                            | normalized_mean_absolute_error spearman_correlation normalized_root_mean_squared_error normalized_root_mean_squared_log_error R2_score You can set a target value for your primary_metric. Once a model is found that meets the primary_metric target, automated machine learning will stop iterating and the experiment terminates. If this value is not set |                              |  |
|                            |                                                                                                                                                                                                                                                                                                                                                               | Nana                         |  |
| experiment_exit_score      | (default), Automated machine learning experiment will continue to run the number of iterations specified in iterations. Takes a double value. If the target never reaches, then Automated machine learning will continue until it reaches the number of iterations specified in iterations.                                                                   | None                         |  |
| iterations                 | Maximum number of iterations. Each iteration is equal to a training job that results in a pipeline. Pipeline is data preprocessing and model. To get a high-quality model, use 250 or more                                                                                                                                                                    | 100                          |  |
| max_concurrent_iterations  | Max number of iterations, to run in parallel. This setting works only for remote compute.                                                                                                                                                                                                                                                                     | 1                            |  |
| max_concurrent_iterations  | Indicates how many cores on the compute target would be used to train a single pipeline. If the algorithm can leverage multiple cores, then this increases the performance on a multi-core machine. You can set it to -1,                                                                                                                                     |                              |  |
| max_cores_per_iteration    | to use all the cores available on the machine.                                                                                                                                                                                                                                                                                                                | 1                            |  |
| iteration_timeout_minutes  | Limits the amount of time (minutes) a particular iteration takes. If an iteration exceeds the specified amount, that iteration gets canceled. If not set, then the iteration continues to run until it is finished.                                                                                                                                           | None                         |  |
| n_cross_validations        | Number of cross validation splits                                                                                                                                                                                                                                                                                                                             | None                         |  |
| validation_size            | Size of validation set as percentage of all training sample.                                                                                                                                                                                                                                                                                                  | None                         |  |
|                            | True/False                                                                                                                                                                                                                                                                                                                                                    |                              |  |
| preprocess                 | True enables experiment to perform preprocessing on the input. Following is a subset of preprocessing Missing Data: Imputes the missing data- Numerical with Average, Text with most occurrence Categorical Values: If                                                                                                                                        | False                        |  |
| ргергосезз                 | data type is numeric and number of unique values is less than 5 percent, Converts into one-hot encoding Etc. for complete list check the GitHub repository                                                                                                                                                                                                    | l disc                       |  |
|                            | Note : if data is sparse you cannot use preprocess = true                                                                                                                                                                                                                                                                                                     |                              |  |
|                            | Automated machine learning experiment has many different algorithms that it tries. Configure to exclude certain algorithms from the experiment. Useful if you are aware that algorithm(s) do not work well for your                                                                                                                                           |                              |  |
|                            | dataset. Excluding algorithms can save you compute resources and training time.                                                                                                                                                                                                                                                                               |                              |  |
|                            | Allowed values for Classification                                                                                                                                                                                                                                                                                                                             |                              |  |
| blacklist models           | Logistic Regression SGD Multinomial Naive Bayes Bernoulli Naive Bayes SVM Linear SVMKNNDecision TreeRandom Forest ExtremeRandom Trees Light GBM Gradient Boosting Tensor Flow DNN Tensor Flow Linear Classifier                                                                                                                                               | None                         |  |
|                            | Allowed values for Regression                                                                                                                                                                                                                                                                                                                                 |                              |  |
|                            | ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN                                                                                                                                                                                                                             |                              |  |
|                            | Allowed values for Forecasting                                                                                                                                                                                                                                                                                                                                |                              |  |
|                            | ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN                                                                                                                                                                                                                             |                              |  |
|                            | Automated machine learning experiment has many different algorithms that it tries. Configure to include certain algorithms for the experiment. Useful if you are aware that algorithm(s) do work well for your dataset. Allowed values for Classification                                                                                                     |                              |  |
|                            |                                                                                                                                                                                                                                                                                                                                                               |                              |  |
| whitelist models           | LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier Allowed values for Regression                                                                                                                                           | None                         |  |
| writtenst_models           | ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN                                                                                                                                                                                                                             | None                         |  |
|                            | Allowed values for Forecasting                                                                                                                                                                                                                                                                                                                                |                              |  |
|                            | ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN                                                                                                                                                                                                                             |                              |  |
|                            | Controls the level of logging with INFO being the most verbose and CRITICAL being the least. Verbosity level takes the same values as defined in the python logging package. Allowed values are:                                                                                                                                                              |                              |  |
| verbosity                  | logging.INFOlogging.WARNINGlogging.ERRORlogging.CRITICAL                                                                                                                                                                                                                                                                                                      | logging.INFO                 |  |
| X                          | All features to train with                                                                                                                                                                                                                                                                                                                                    | None                         |  |
| V                          | Label data to train with. For classification, should be an array of integers.                                                                                                                                                                                                                                                                                 | None                         |  |
| X valid                    | Optional All features to validate with. If not specified, X is split between train and validate                                                                                                                                                                                                                                                               | None                         |  |
| v valid                    | Optional The label data to validate with. If not specified, y is split between train and validate                                                                                                                                                                                                                                                             | None                         |  |
| sample_weight              | Optional A weight value for each sample. Use when you would like to assign different weights for your data points                                                                                                                                                                                                                                             | None                         |  |
| sample_weight_valid        | Optional A weight value for each validation sample. If not specified, sample_weight is split between train and validate                                                                                                                                                                                                                                       | None                         |  |
| run_configuration          | RunConfiguration object. Used for remote runs.                                                                                                                                                                                                                                                                                                                | None                         |  |
| data_script                | Path to a file containing the get_data method. Required for remote runs.                                                                                                                                                                                                                                                                                      | None                         |  |
|                            | Optional True/False                                                                                                                                                                                                                                                                                                                                           |                              |  |
| model_explainability       | True enables experiment to perform feature importance for every iteration. You can also use explain_model() method on a specific iteration to enable feature importance on-demand for that iteration after experiment is                                                                                                                                      | False                        |  |
|                            | complete.                                                                                                                                                                                                                                                                                                                                                     |                              |  |
| enable_ensembling          | Flag to enable an ensembling iteration after all the other iterations complete.                                                                                                                                                                                                                                                                               | True                         |  |
| ensemble_iterations        | Number of iterations during which we choose a fitted pipeline to be part of the final ensemble.                                                                                                                                                                                                                                                               | 15                           |  |
| experiment_timeout_minutes | Limits the amount of time (minues) that the whole experiment run can take                                                                                                                                                                                                                                                                                     | None                         |  |
|                            |                                                                                                                                                                                                                                                                                                                                                               |                              |  |

### **Benefits Overview**

### **Azure Automated ML lets you**

Automate the exploration process

Use resources more efficiently

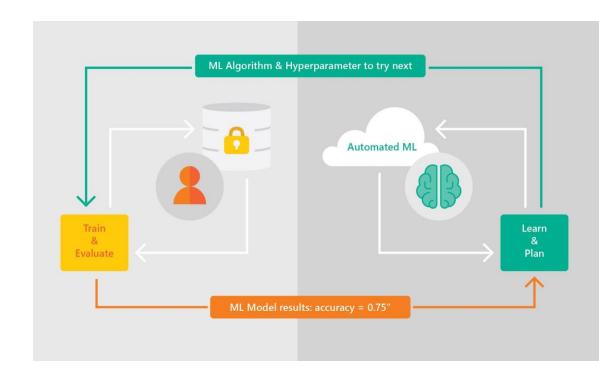
Optimize model for desired outcome

Control resource budget

### Apply it to different models and learning domains

Pick training frameworks of choice

Visualize all configurations in one place



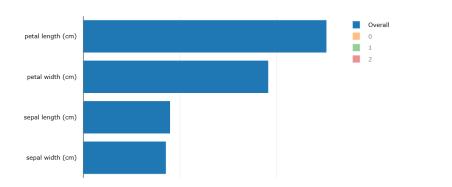
Note about security: on the right side of the automated ML service, the gray part is separated from the training and data, only the result (orange bottom block) is sent back from training to the service; hence your data and algorithm safely stay within your subscription.

Model Explainability

```
from azureml.train.automl.automlexplainer
automl_config = AutoMLConfig(task = 'classification',
               debug_log = 'automl_errors.log',
                                                import retrieve model explanation
               primary_metric = 'AUC_weighted',
                                                shap values, expected values,
               max time sec = 12000,
                                               overall summary, overall imp,
               iterations = 10,
                                                per class summary, per class imp = \
               verbosity = logging.INFO,
                                                retrieve model explanation (best run)
                                                #Overall feature importance
               X = X_{train}
                                                print(overall imp) print(overall summary)
               y = y_train,
                                                #Class-level feature importance
               X valid = X test,
               y_valid = y_test,
                                               print(per class imp)
               model_explainability=True,
                                               print(per class summary)
               path=project_folder)
```

You can view it in your workspace in Azure portal Or you can show it using Jupyter widgets in a notebook:

from azureml.widgets import RunDetails RunDetails(local\_run).show()

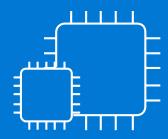


# Microsoft Research Paper & Examples

For those who wants to find out more about Automated Machine Learning:

https://arxiv.org/abs/1705.05355

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning



# Distributed Training with Azure ML Compute

# Distributed Training with Azure ML Compute

You submit a model training 'job' – the infrastructure is managed for you.

Jobs run on a VM or Docker container.

Supports Low priority (Cheaper) or Dedicated (Reliable) VMS.

Auto-scales: Just specify min and max number of nodes.

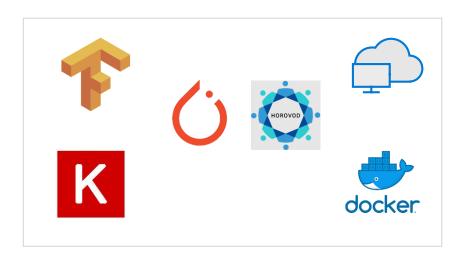
If min is set to zero, cluster is deleted when no jobs are running; so pay only for job duration.

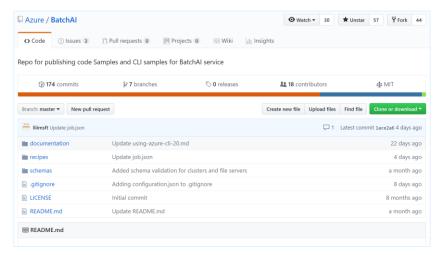
Works with most popular frameworks and multiple languages.

Supports distributed training with Horovod.

Cluster can be shared; multiple experiments can be run in parallel.

Supports most VM Families, including latest NVidia GPUs for DL model training.







# Try it for free!

http://aka.ms/amlfree

# THANK YOU!

Learn more:

https://docs.microsoft.com/en-us/azure/machine-learning/service/

Visit the <u>Getting started guide:</u> <a href="https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python">https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python</a>

Fantastic free Azure notebooks (with Azure Machine Learning SDK pre-configured): <a href="https://notebooks.azure.com">https://notebooks.azure.com</a>